Ultrametrics, Banach's fixed point theorem and the Riordan group

نویسندگان

  • Ana Luzón
  • Manuel A. Morón
چکیده

We interpret the reciprocation process in K[[x]] as a fixed point problem related to contractive functions for certain adequate ultrametric spaces. This allows us to give a dynamical interpretation of certain arithmetical triangles introduced herein. Later we recognize, as a special case of our construction, the so called Riordan group which is a device used in combinatorics. In this manner we give a new and alternative way to construct the proper Riordan arrays. Our point of view allows us to give a natural metric on the Riordan group turning this group into a topological group. This construction allows us to recognize a countable descending chain of normal subgroups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Common Fixed Point Results on Complex-Valued $S$-Metric Spaces

Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...

متن کامل

ar X iv : m at h / 05 10 48 0 v 1 [ m at h . G M ] 2 2 O ct 2 00 5 On Multi - Metric Spaces ̧

A Smarandache multi-space is a union of n spaces A 1 , A 2 , · · · , A n with some additional conditions holding. Combining Smarandache multi-spaces with classical metric spaces, the conception of multi-metric space is introduced. Some characteristics of a multi-metric space are obtained and Banach's fixed-point theorem is generalized in this paper.

متن کامل

Hyers-Ulam stability of Volterra integral equation

We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008